Меню сайта

загрузка...

Предыдущая     |         Содержание     |    следующая

Теория систем автоматического управления

Спектральная плотность стационарных процессов

Рассмотрим так называемую энергетическую форму интеграла Фурье. В главе 5 были приведены формулы (7.15) и (7.16), дающие переход от функции времени к изображению Фурье и обратно. Если рассматривается некоторая случайная функция времени х (с), то для нее эти формулы могут быть записаны в виде

и проинтегрируем по всем

заменим выражением (11.54):

Величина, находящаяся в квадратных скобках (11.57), как нетрудно видеть, является исходной функцией времени (11.55). Поэтому в результате получается так называемая формула Релея (теорема Парсеваля), которая и соответствует энергетической форме интеграла Фурье:

получим

Правая часть (11.58) и (11.39) представляет собой величину, пропорциональную энергии рассматриваемого процесса. Так, например, если рассматривается ток, протекающий по некоторому резистору с сопротивлением К, то энергия, выделившаяся в этом резисторе за время и будет

Формулы (11.58) и (11.59) и выражают энергетическую форму интеграла Фурье.

Однако эти формулы неудобны тем, что для большинства процессов энергия за бесконечный интервал времени стремится также к бесконечности. Поэтому удобнее иметь дело не с энергией, а со средней мощностью процесса, которая будет получена, если энергию поделить на интервал наблюдения. Тогда формулу (11.58) можно представить в виде

Вводя обозначение

носит название спектральной плотности. Важным

По своему физическому смыслу спектральная плотность есть величина, которая пропорциональна средней мощности процесса в интервале частот от со до со + й?со.

В некоторых случаях спектральную плотность рассматривают только для положительных частот, удваивая ее при этом, что можно сделать, так как спектральная плотность является четной функцией частоты. Тогда, например, формула (11.62) должна быть записана в виде

— спектральная плотность для положительных частот.

так как при этом формулы получают более симметричный характер.

Весьма важным обстоятельством является то, что спектральная плотность и корреляционная функция случайных процессов представляют собой взаимные преобразования Фурье, т. е. они связаны интегральными зависимостями типа (11.54) и (11.55). Это свойство приводится без доказательств [88].

Таким образом, могут быть записаны следующие формулы:

Так как спектральная плотность и корреляционная функция представляют собой четные вещественные функции, то иногда формулы (11.65) и (11.66) представляют в более простом виде;

  )

Это вытекает из того, что имеют место равенства:

и мнимые части могут быть отброшены после подстановки в (11.65) и (11.66), так как слева стоят вещественные функции.

заключается в том, что чем уже график спектральной плотности (рис, 11.16, а), т. е. чем меньшие частоты представлены в спектральной плотности, тем медленнее изменяется величина х во времени. Наоборот, чем шире график спектральной плотности (рис. 11.16, б), т. е. чем большие частоты представлены в спектральной плотности, тем тоньше структура функции х (г) и тем быстрее происходят изменения .г во времени.

Как видно из этого рассмотрения, связь между видом спектральной плотности и видом функции времени получается обратной но сравнению со связью между корреляционной функцией и самим процессом (рис. 11.14). Отсюда вытекает, что более широкому графику спектральной плотности должен соответствовать более узкий график корреляционной функции и наоборот.

и 8 (со). Эти функции, в отличие от импульсных функций, рассматривавшихся в главе 4, являются четными. Это означает, что функция 8 (т) расположена симметрично относительно начала координат и может быть определена следующим образом;

Аналогичное определение относится к функции 8 (со). Иногда в рассмотрение вводят нормированную спектральную плотность, являющуюся изображением Фурье нормированной корреляционной функции (11.52):

и следовательно,

где О — дисперсия.

Взаимные спектральные плотности также являются мерой связи между двумя случайными величинами. При отсутствии связи взаимные спектральные плотности равны нулю.

Рассмотрим некоторые примеры.

Эта функция изображена на рис. 11.17, а. Соответствующее ей изображение Фурье на основании табл. 11.3 будет

Спектр процесса состоит из единственного пика типа импульсной функции, расположенной в начале координат (рис. 11,17, б).

Это означает, что вся мощность рассматриваемого процесса сосредоточена на пулевой частоте, что и следовало ожидать.

Эта функция изображена на рис. 11.18, а, В соответствии с табл. 11.3 спектральная плотность будет

или

3. Для периодической функции, разлагаемой в ряд Фурье

кроме периодической части будет содержать непериодическую составляющую, то спектр этой функции будет содержать, наряду с отдельными линиями типа импульсной функции, также и непрерывную часть (рис. 11.20). Отдельные пики на графике спектральной плотности указывают на присутствие в исследуемой функции скрытых нериодичностей.

не содержит периодической части, то она будет иметь непрерывный спектр без ярко выраженных пиков.

Рассмотрим некоторые стационарные случайные процессы, имеющие значение при исследовании систем управления. Будем рассматривать только центрированные

. При этом средний квадрат случайной величины будет равен дисперсии:

учет постоянного смещения в системе управления является элементарным.

(рис. 11.21, а):

Пример такого процесса — тепловые шумы резистора, которые дают уровень спектральной плотности хаотического напряжения на этом резисторе

—абсолютная температура.

На основании (11,68) спектральной плотности (11.71) соответствует корреляционная функция

отсутствует корреляция между последующими и предыдущими значениями случайной величины х.

а следовательно, бесконечно большая мощность.

Чтобы получить физически реальный процесс, удобно ввести понятие белого шума с ограниченной спектральной плотностью (рис. 11.21, б):

— полоса частот для спектральной плотности.

Этому процессу соответствует корреляционная функция

Среднеквадратичное значение случайной величины пропорционально корню квадратному из полосы частот:

Часто бывает удобнее аппроксимировать зависимость (11.73) плавной кривой. Для этой цели можно, например, использовать выражение

— коэффициент, определяющий ширину полосы частот.

  процесс приближается к белому шуму, так

как для этих частот

Интегрирование (11.77) по всем частотам дает возможность определить дисперсию:

Поэтому спектральная плотность (11.77) может быть записана в другом виде:

Корреляционная функция для этого процесса

Корреляционная функция также изображена на рис. 11.21, в.

Переход от одного значения к другому совершается мгновенно. Интервалы времени подчиняются закону распределения Пуассона (11.4).

График такого вида получается, например, в первом приближении при слежении радиолокатором за движущейся целью. Постоянное значение скорости соответствует движению цели по прямой. Перемена знака или величины скорости соответствует маневру цели.

будет средним значением интервала времени, в течение которого угловая скорость сохраняет постоянное значение. Применительно к радиолокатору это значение будет средним временем движения цели по прямой.

Для определения корреляционной функции необходимо найти среднее значение произведения

При нахождении этого произведения могут быть два случая.

относятся к одному интервалу. Тогда среднее значение произведения угловых скоростей будет равно среднему квадрату угловой скорости или дисперсии:

относятся к разным интервалам. Тогда среднее значение произведения скоростей будет равно пулю:

так как произведения с положительным и отрицательным знаками будут равновероятными. Корреляционная функция будет равна

вероятность нахождения их в разных интервалах.

Вероятность отсутствия

Для интервала времени

так как эти события независимые.

В результате для конечного промежутка Ат получаем

Знак модуля при т поставлен вследствие того, что выражение (11.80) должно соответствовать четной функции. Выражение для корреляционной функции совпадает с (11.79). Поэтому спектральная плотность рассматриваемого процесса должна совпадать с (11.78):

Заметим, что в отличие от (11.78) формула спектральной плотности (11.81) записана для угловой скорости процесса (рис. 11.22). Если перейти от угловой скорости к углу, то получится нестационарный случайный процесс с дисперсией, стремящейся к бесконечности. Однако в большинстве случаев следящая система, на входе которой действует этот процесс, обладает астатизмом первого и более высоких порядков. Поэтому первый коэффициент ошибки с0 у следящей системы равен нулю и ее ошибка будет определяться только входной скоростью и производными более высоких порядков, относительно которых процесс стационарен. Это дает возможность использовать спектральную плотность (11.81) при расчете динамической ошибки следящей системы.

3. Нерегулярная качка. Некоторые объекты, например корабли, самолеты и другие, находясь под действием нерегулярных возмущений (нерегулярное волнение, атмосферные возмущения и т. п.), движутся но случайному закону Так как сами объекты имеют определенную им свойственную, частоту колебаний, то они обладают свойством подчёркивать те частоты возмущений, которые близки к их собственной частоте колебаний. Получающееся при этом случайное движение объекта называют нерегулярной качкой в отличие от регулярной качки, представляющей собой периодическое движение.

Типичный график нерегулярной качки изображен на рис. 11.23. Из рассмотрения этого графика видно, что, несмотря на случайный характер, это

движение довольно близко к периодическому.

В практике корреляционную функцию нерегулярной качки часто аппроксимируют выражением

— дисперсия.

находятся обычно путем обработки экспериментальных данных (натурных испытаний).

Корреляционной функции (11.82) соответствует спектральная плотность (см. табл. 11.3)

Неудобством аппроксимации (11.82) является то, что этой формулой можно описать поведение какой-либо одной величины нерегулярной качки (угла, угловой скорости или углового ускорения), В этом случае величина О будет соответствовать дисперсии угла, скорости или ускорения.

Если, например, записать формулу (11.82) для угла, то этому процессу будет соответствовать нерегулярная камка с дисперсией для угловых скоростей, стремящейся к бесконечности, т. е. это будет физически нереальный процесс.

Более удобная формула для аппроксимации угла качки

Однако и эта аппроксимация соответствует физически нереальному процессу, так как дисперсия углового ускорения получается стремящейся к бесконечности.

Для получения конечной дисперсии углового ускорения требуются еще более сложные формулы аппроксимации, которые здесь не приводятся.

Типичные кривые для корреляционной функции и спектральной плотности нерегулярной качки приведены на рис. 11.24.