Меню сайта

Предыдущая     |         Содержание     |    следующая

Коррозия и защита от коррозии

Коррозия металлов в природных средах

Большинство металлоконструкций эксплуатируется в природных, естественных средах. Значительное количество стальных сооружений эксплуатируется в атмосферных условиях. Магистральные и промысловые трубопроводы, водоводы, обсадные колонны скважин нефтяных и газовых месторождений работают под землей. Общая масса стали, находящаяся под землей, превышает 200 млн тонн, а поверхность стальных сооружений, подвергающихся почвенной коррозии, составляет более полутора миллиардов квадратных метров.

Металлические конструкции портов, причалов, судов находятся в постоянном контакте с водой и подвержены морской коррозии.

Все виды коррозионных процессов в природных условиях протекают по электрохимическому механизму. Однако каждая природная среда обладает своими особенностями.

Атмосферная коррозия металлов

Атмосферная коррозия — это коррозия сооружений и оборудования, эксплуатирующихся в нормальной земной атмосфере.

Скорость коррозии и вид коррозионного разрушения зависят от природы металла, влажности, загрязненности атмосферы (ГОСТ 16350-80). В среднем скорость коррозии металлов в атмосфере ниже, чем в почве и морской воде.

Основным стимулирующим фактором атмосферной коррозии является вода. При относительной влажности воздуха до 60 % следы влаги на поверхности металла отсутствуют. В этом случае коррозия протекает по химическому механизму. Образующиеся на поверхности оксидные пленки обладают защитными свойствами и тормозят развитие коррозионных разрушений (рис. 6.1).

При относительной влажности воздуха, равной 60-70%, начинается конденсация влаги и на поверхности металла появляется адсорбционная пленка воды. Относи тельная влажность, при которой начинается конденсация влаги на поверхности металла, называется критической влажностью. Она зависит от состояния металла и от степени загрязнения воздуха.

При относительной влажности, близкой к 100%, или при непосредственном увлажнении металла (дождь, туман), на поверхности происходит образование видимых фазовых слоев воды.

Указанные три типа состояний значительно отличаются по механизму протекания процесса коррозии.

В области сухой коррозии, как указывалось выше, реализуется химический механизм процесса и скорость разрушения металлов невелика. Рост оксидной пленки происходит в первые секунды и минуты. После двух-трех часов дальнейшее утолщение пленки прекращается. Предельная толщина пленок на железе — 30-40 А, на нержавеющих сталях — 10-20 А.

При образовании адсорбционного слоя влаги (толщиной порядка нескольких молекулярных слоев) на поверхности металла появляется

электролит. В этих условиях реализуется электрохимический механизм и скорость коррозии значительно возрастает. Пленка влаги имеет небольшую толщину, кислород проникает через нее беспрепятственно и катодный процесс не затруднен. Анодный процесс осложняется тем, что продукты коррозии экранируют поверхность металла. Так как пленка влаги очень тонкая, то весьма существенны омические потери, но, в целом, процесс контролируется анодным торможением (рис. 6.2, а).

При образовании фазовых пленок в области мокрой коррозии затруднятся доставка кислорода и наблюдается катодное торможение процесса (рис. 6.2, б).

Железо и сталь в обычных условиях подвергаются общей равномерной коррозии. Характер протекания атмосферной коррозии существенно зависит от конструктивных особенностей изделия. Наличие узких щелей и зазоров, в которых возможны капиллярная конденсация и застой влаги, усугубляют атмосферную коррозию и могут привести к образованию коррозионных язв (рис. 6.3).

,

увеличивают скорость коррозионных разрушений только в 5-7 раз.

В работах Ю.Н. Михайловского предложена физико-механическая модель атмосферной коррозии, которая позволяет связать интенсивность коррозионных разрушений с параметрами окружающей среды. Это служит основой для прогнозирования коррозионного поведения металлов и разработки способов их защиты.

Стойкость металлов к атмосферной коррозии зависит от их химической природы и состояния поверхности. Ниже приведены приближенные данные по стойкости некоторых металлов в городской атмосфере (табл. 6.1).

Для защиты от атмосферной коррозии используют различные органические, неорганические и металлические покрытия. Эффективно легирование стали небольшими количествами меди, никеля, фосфора и хрома.