Меню сайта

Автосервис ровелс ремонт автомобилей в спб автосервис спб personaspb.com.
Предыдущая     |         Содержание     |    следующая

Проблемы гидромеханники

Образование волн

Проблеме образования ветровых волн посвящено огромное количество статей, обзоров и монографий. Каков механизм образования волн при заданном ветровом режиме, существует ли обратная связь, т. е. влияют ли в свою очередь волны на ветровой режим? Эти и многие другие вопросы не решены до сих пор, хотя качественная картина была ясна уже давно.

где

С другой стороны, если высота волны становится порядка своей длины, то гребень волны срывается ветром и преимущества роста приобретают волны большей длины. В этих условиях по истечении достаточно большого времени должен наступить установившийся режим. Можно показать, что для этого скорость ветра должна быть вдвое больше скорости волн.

В самом деле, естественно предположить, что здесь (как в задаче обтекания траншеи из § 22) между каждыми двумя соседними горбами волны имеется зона вихревого движения (рис. 140). Перейдем к системе координат, связанной с волной. В этой системе скорость течения жидкости равна скорости движения волны и направлена в отрицательную сторону. В силу непрерывности поля скоростей на границе вихревой зоны скорость ветра тоже должна быть равной С, но направлена в положительную сторону. Переходя снова к неподвижной системе координат, получаем доказательство высказанного утверждения.

Наряду с теоретическими работами проводилось много наблюдений ветровых волн в натурных условиях. Лет 20 назад в Крыму был построен специальный штормовой бассейн с вертикальными круговыми цилиндрическими стенками. Над свободной поверхностью там расположено несколько мощных компрессоров, которые способны создавать ветер в большом диапазоне скоростей. Волны в этом штормовом бассейне действительно образуются, но их характер существенно отличен от нормальных ветровых волн, при образовании которых ветер имеет достаточно стабильную направленность. В кольцевом бассейне образовавшиеся волны, имея определенную направленность в зоне зарождения, очень быстро переходят в колебания воды в направлении оси бассейна — создаются группы стоячих волн.

Очень интересно наблюдать, но трудно рассчитать явления, которые связаны с кольцевыми волнами. Отметим одно из них — если каким-либо образом, например, шнуровым зарядом ВВ, имеющим форму окружности, создать кольцевую волну (кольцевую выпуклость или кольцевую яму), то в стороны от центра кольца волны будут распространяться с обычным законом затухания. Но в сторону центра длина волны будет меняться медленно, и не будет обычного расщепления волны на более мелкие. В соответствии с этим высота волны при приближении к центру будет нарастать и даст всплеск по высоте, в несколько раз превышающей начальную высоту волны.

Устойчивость струй. В круге идей, рассмотренных выше, имеется большая группа задач по устойчивости жидких струй. Классической является проблема устойчивости водяной струи в воздухе. В частности, если заданы выходная скорость и диаметр струи, то какой высоты можно достигнуть струей? Какого расстояния можно достигнуть струей?

В этих постановках воду можно рассматривать как -идеальную жидкость. При скорости струи, близкой -к скорости звука в воздухе, естественно, будет существенным фактор сжимаемости воздуха. До сих пор до конца не решена проблема затопленной струи — водяной струи, движущейся в воде; в этом случае существенным фактором является вязкость, а при значительных скоростях — турбулентность.

Сюда же относится весьма интересная как принципиально, так и с точки зрения приложений проблема устойчивости жидкого стержня при одновременном растяжении и закручивании. Пусть дана осесимметричная трубка из мягкого железа или меди, осевое сечение которой имеет синусоидальный характер; диаметр трубки 10—15мм, толщина стенки 1—1,5мм.

Опишем, как можно изготовлять такие трубки. Вытачивается матрица, внутренняя поверхность которой совпадает с внешней поверхностью будущей трубки. В матрицу вставляется цилиндрическая трубка, которая герметически закрыта с одного конца, а с другого конца матрицу нужно завинтить крышкой с небольшим отверстием по оси (рис. 141). В это отверстие под большим давлением нагнетается вода, в результате чего внешняя поверхность вставленной трубки вплотную подходит к матрице. При таком способе отштампованная трубка

будет иметь переменную толщину стенок; чтобы избежать этого, вставляемый в матрицу цилиндр следует предварительно немного выточить снаружи в нужных местах.

Рассматривается два случая: когда трубка пустая и когда она заполнена водой. В каждом случае трубка растягивается в направлении своей оси и, кроме того, при постоянном растяжении она. еще закручивается, причем скорость закручивания меняется. Требуется выяснить, в каких случаях волны на поверхности трубки будут сглаживаться (устойчивость) и в каких они будут нарастать (неустойчивость).

Качественно довольно ясно, что при простом растяжении (или растяжении с достаточно малым закручиванием) мы получим устойчивый процесс — волны на поверхности трубки будут сглаживаться. В самом деле, растягивающая сила будет увеличивать диаметр сечений трубок в шейках и уменьшать диаметр сечений в пучностях.

Все изменится, если наряду с растяжением трубка достаточно сильно закручивается. Волокна трубки, расположенные в ее осевом сечении, превратятся в спирали, а растяжение будет сжимать эти спирали, особенно сильно в узких местах, соответствующих шейкам трубки. Это приведет к дальнейшему сжатию шеек, и процесс будет неустойчивым.

Очень желательно построить количественную модель описанного явления. Предварительно следует выяснить статическую и динамическую устойчивость стержней и трубок (упругих и с пластичностью) при чистом закручивании. При этом нужно рассмотреть два случая: а) расстояние между торцами трубки или стержня не меняется, б) действуют только крутящие силы.