Меню сайта

http://rupor-megafon.ru/ что такое орал значение слова орал.
Предыдущая     |         Содержание     |    следующая

Проблемы гидромеханники

Формирование и движение вихрей

Вихри в воздухе. Экспериментально известен ряд способов создания вихревых движений. Описанный выше способ получения дымовых колец из ящика позволяет получать вихри, радиус и скорость которых имеют порядок 10—20 см и 10 м/сек соответственно, в зависимости от диаметра отверстия и силы удара. Такие вихри проходят расстояния 15—20 м.

Вихри гораздо большего размера (радиусом до 2 м) и большей скорости (до 100 м/сек) получаются с помощью ВВ. В трубе, закрытой с одного конца и заполненной дымом, производится подрыв заряда ВВ, расположенного у дна. Вихрь, получаемый из цилиндра радиусом 2 м при заряде весом около 1 кг, проходит расстояние около 500 м. На большей части пути вихри, получаемые таким способом, имеют турбулентный характер и хорошо описываются законом движения, который изложен в § 35.

Механизм образования таких вихрей качественно ясен. При движении в цилиндре воздуха, вызванном взрывом, на стенках образуется пограничный слой. На краю цилиндра пограничный слой отрывается, в результате чего создается тонкий слой воздуха со значительной завихренностью. Затем происходит сворачивание этого слоя. Качественная картина последовательных этапов приведена на рис. 127, где изображен один край цилиндра и срывающийся с него вихревой слой. Возможны и другие схемы образования вихрей.

При малых числах Рейнольдса спиральная структура вихря сохраняется довольно долго. При больших числах Рейнольдса, в результате неустойчивости, спиральная структура разрушается сразу и происходит турбулентное перемешивание слоев. В результате образуется вихревое ядро, распределение завихренности в котором

можно найти, если решить поставленную в § 35 задачу, описываемую системой уравнений (16).

Однако в настоящий момент нет никакой схемы расчета, которая позволяла бы по заданным параметрам трубы и весу ВВ определять начальные параметры сформировавшегося турбулентного вихря (т. е. его начальные радиус и скорость). Эксперимент показывает, что для трубы с заданными параметрами существует наибольший и наименьший вес заряда, при которых вихрь образуется; на его образование сильно влияет и расположение заряда.

Вихри в воде. Мы уже говорили, что вихри в воде можно получать аналогичным способом, выталкивая поршнем из цилиндра некоторый объем жидкости, подкрашенной чернилами.

В отличие от воздушных вихрей, начальная скорость которых может достичь 100 м/сек и более, в воде при начальной скорости 10—15 м/сек вследствие сильного вращения жидкости, движущейся вместе с вихрем, возникает кавитационное кольцо. Оно возникает в момент образования вихря при срыве пограничного слоя с края цилиндра. Если пытаться получить вихри со скоростью более 20 м/сек, то кавитационная каверна становится столь большой, что возникает неустойчивость и вихрь разрушается. Сказанное относится к диаметрам цилиндра порядка 10 см; возможно, что с увеличением диаметра удастся получить устойчивые вихри, движущиеся с большой скоростью.

Интересное явление возникает, когда вихрь движется в воде вертикально вверх по направлению к свободной поверхности. Часть жидкости, образующая так называемое тело вихря, взлетает над поверхностью, сначала почти без изменения формы — водяное кольцо выпрыгивает из воды. Иногда скорость вылетевшей массы в воздухе увеличивается. Это можно объяснить отбрасыванием воздуха, которое происходит на границе вращающейся жидкости. В дальнейшем вылетевший вихрь разрушается под действием центробежных сил.

Падение капель. Легко наблюдать вихри, образующиеся при падении капель чернил в воду. Когда чернильная капля попадает в воду, образуется кольцо, состоящее из чернил и движущееся вниз. Вместе с кольцом движется некоторый объем жидкости, образующий тело вихря, которое также окрашено чернилами, но гораздо слабее. Характер движения сильно зависит от соотношения плотностей воды и чернил. При этом оказываются существенными различия плотности в десятые доли процента.

Плотность чистой воды меньше, чем чернил. Поэтому при движении вихря на него действует сила, направленная вниз, по ходу вихря. Действие этой силы приводит к увеличению импульса вихря. Импульс вихря

где Г — циркуляция или интенсивность вихря, и R — радиус вихревого кольца, а скорость движения вихря

Если пренебречь изменением циркуляции, то из этих формул можно сделать парадоксальный вывод: действие силы в направлении движения вихря приводит к уменьшению его скорости. Действительно, из (1) следует, что с ростом импульса при постоянной циркуляции должен увеличиваться радиус R вихря, но из (2) видно, что при постоянной циркуляции с ростом R скорость падает.

В конце движения вихря чернильное кольцо распадается на 4—6 отдельных сгустков, которые в свою очередь превращаются в вихри с маленькими спиральными кольцами внутри. В некоторых случаях эти вторичные кольца распадаются еще раз.

Механизм этого явления не очень ясен, и существует несколько его объяснений. В одной схеме главную роль играет сила тяжести и неустойчивость так называемого тейлоровского типа, которая возникает, когда в поле тяжести более плотная жидкость находится над менее плотной, причем обе жидкости вначале покоятся. Плоская граница, разделяющая две такие жидкости, неустойчива — она деформируется, и отдельные сгустки более плотной жидкости проникают в менее плотную.

При движении чернильного кольца циркуляция на самом деле уменьшается, и это приводит к полной остановке вихря. Но на кольцо продолжает действовать сила тяжести, и в принципе оно должно было бы опускаться дальше как целое. Однако возникает тейлоровская неустойчивость, и в результате кольцо распадается на отдельные сгустки, которые опускаются под действием силы тяжести и в свою очередь образуют маленькие вихревые кольца.

Возможно и другое объяснение этого явления. Увеличение радиуса чернильного кольца приводит к тому, что часть жидкости, движущаяся вместе с вихрем, принимает форму, изображенную на рис. 127 (стр. 352). В результате действия на вращающийся тор, состоящий из линий тока, сил, аналогичных силе Магнуса, элементы кольца приобретают скорость, направленную перпендикулярно скорости движения кольца как целого. Такое движение неустойчиво, и происходит распад на отдельные сгустки, которые снова превращаются в маленькие вихревые кольца.

Механизм образования вихря при падении капель в воду может иметь разный характер. Если капля падает с высоты 1—3 см, то ее вход в воду не сопровождается всплеском и свободная поверхность деформируется слабо. На границе между каплей и водой образуется вихревой слой, сворачивание которого и приводит к образованию кольца чернил, окруженного захваченной вихрем водой. Последовательные стадии образования вихря в этом случае качественно изображены на рис. 128.

При падении капель с большой высоты механизм образования вихрей иной. Здесь падающая капля, деформируясь, растекается на поверхности воды, сообщая на площади, много большей ее диаметра, импульс с максимальной интенсивностью в центре. В результате на поверхности воды образуется впадина, она по инерции расширяется, а потом происходит схлопывание и возникает кумулятивный всплеск — султан.

Масса этого султана в несколько раз больше массы капли. Падая под действием силы тяжести в воду, султан образует вихрь по уже разобранной схеме (рис. 128); на рис. 129 изображена первая стадия падения капли, приводящая к образованию султана.

По этой схеме образуются вихри, когда на воду падает редкий дождь с крупными каплями — поверхность воды покрывается тогда сеткой небольших султанчиков. Вследствие образования  таких султанчиков каждая капля значительно наращивает свою массу, и поэтому вихри, вызванные ее падением, проникают на довольно большую глубину.

По-видимому, это обстоятельство можно положить в основу объяснения известного эффекта гашения дождем поверхностных волн в водоемах. Известно, что при наличии волн горизонтальные составляющие скорости частиц на поверхности и на некоторой глубине имеют противоположные направления. Во время дождя значительное количество жидкости, проникающее на глубину,

гасит волновую скорость, а восходящие из глубины токи гасят скорость на поверхности. Было бы интересно подробнее разработать этот эффект и построить его математическую модель.

https://www.minetki.biz